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Abstract

The problem of dynamic interaction of wave phase fronts with anisotropic elastic media interfaces is considered. A

technique based on joint use of the ray theory, locally plane approach and theory of stereomechanical impact is

elaborated. It is employed for the investigation of discontinuous waves propagation in anisotropic tectonic structures.

The cases of interaction of quasi-longitudinal and quasi-shear discontinuous waves with the interfaces separating

different anisotropic elastic media are treated. The issues are considered which are associated with the wave front

surfaces bifurcations, generation of their singularities and caustics, as well as with stress concentration and formation of

zones where the stresses tend to infinity.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is a large variety of problems of propagation of waves generated by impact action and char-

acterized by discontinuities of strains and stresses at their front surfaces. Every so often in this cases, it

is not necessary to study the field functions behaviour in the whole domain of a medium, but is expedi-

ent to consider the process of the wave motion as a signal, which can identify the mechanical system

properties. This kind of problems is associated with the reconnaissance of mineral resources via the use

of explosions, with the calculation of the phenomena of reflection–refraction of seismic waves in tec-

tonic structures, as well as with the questions of the wave propagation and decay in layered composite
materials.

In these cases, the problem of investigation of discontinuous waves propagation in elastic media is

connected with the questions of geometrical construction of moving field functions discontinuities and

calculation of their polarizations and magnitudes presenting the most comprehensive information on a
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wave front and intensity of the impulse carried by it at the every point of the front. The methods of

geometrical optics, specifically, a zero approach of the ray method, providing an adequate quantitative

description of a wide class of the wave phenomena of different physical nature, play an important role in the

setting up and solution of the mentioned problems (Karal and Keller, 1959; Ogilvy, 1990; Petrashen, 1980;
Podilchuk and Rubtsov, 1988, 1996).

The ray method allows to separate a function of the wave optical way length (or eikonal) and to con-

struct a system of rays and fronts of a discontinuous wave with the help of the eikonal equation. This

problem may be solved comparatively easy for isotropic media, but there again some difficulties arise when

there is a necessity to investigate the interaction of a wave with the interface between the media with

differing optical properties (lenses, inhomogeneities, etc.). In these events, the aggregates of the rays are

produced, which have common envelopes (caustics), where the rays are focussed and the field intensity

increases indefinitely. In geometrical optics, the caustics classification is performed on the basis of the
theory of singularities of differentiable mappings––the theory of catastrophes (Arnold, 1974; Arnold et al.,

1982; Kravtsov and Orlov, 1980; Poston and Stewart, 1978).

But the physical pictures of the dynamic phenomena are drastically complicated when discontinuous

waves propagation in anisotropic elastic media is investigated, because of the field functions become

vectorial; there are three kinds of waves for every ray direction, which are distinguished by their polar-

ization; the waves phase velocities depend on both the waves polarization and direction of propagation; the

ray velocities differ from the phase ones and there is not always one-to-one conformity between their di-

rections. The phenomenon of the wave diffraction in the interfaces between elastic anisotropical media also
is radically complicated, as the appropriate correlations by Snellius become essentially non-linear, because

of the fact that the phase velocities of the reflected and refracted waves propagation cease to be known

beforehand. For this reason it is necessary to solve systems of non-linear equations in order to determine

the directions of the rays emanated from the boundary surfaces. The possible non-uniqueness of their

solutions may cause the advent of caustics even at the incidence of a regular shock wave on a plane in-

terface, which cannot be in homogeneous isotropical media, and generate more wide diversity of quali-

tatively different phenomena in the processes of reflection–refraction.

The problems of interaction of incident waves with the boundary surfaces interfacing anisotropical
elastic media are normally solved through the construction of the refraction vector functions (Fedorov,

1968), which, in essence, represents a graphical method. Ogilvy (1990) applied a similar approach to in-

vestigation of a mirage phenomena in anisotropic heterogeneous elastic media. In the present paper, the

method of continuation by a parameter jointly with the Newton method (Gulyayev et al., 1982) is used,

which permits to identify bifurcational states of wave front transformation with the best efficiency.

2. Constitutive equations

Let the motion of a homogeneous anisotropical elastic medium characterized by the elasticity parameters

Cki;pq ¼ const and density q ¼ const be described by the equations

X3

k;p;q¼1
kik;pq

o2uq
oxkoxp

� o2ui
ot2

¼ 0 ði ¼ 1; 2; 3Þ; ð1Þ

where kik;pq ¼ Cik;pq=q; x1, x2, x3 is the Cartesian coordinate system; u1, u2, u3 the components of the elastic
displacement vector.

Consider the system (1) solution in the form of a plane monochromatic wave with the wave number k and
the phase velocity t. Its fronts are the surfaces possessing the constant phases
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n � r� tt ¼ const; ð2Þ

which coincide locally with the areas perpendicular to the unit vector n and moving with the velocity

t ¼ t � n.
The question of the wave polarization vector A and phase velocity t determination for the selected di-

rection n is solved on the basis of the system of homogeneous algebraic equations relative Ai (Fedorov,

1968; Gulyayev et al., 1997; Petrashen, 1980)

X3

k;p;q¼1
kik;pqnknpAq � t2Ai ¼ 0 ði ¼ 1; 2; 3Þ: ð3Þ

Its matrix

Kiq ¼
X3

k;p¼1
kik;pqnknp ði; q ¼ 1; 2; 3Þ: ð4Þ

possesses the properties of symmetry and positive definiteness.

From condition of the system (3) non-trivial solution existence, the eigen-value problem stems

X3

k;p¼1
kik;pqnknp

����� � t2diq

����� ¼ 0: ð5Þ

It is possible to find three values of the velocity

t21ðnÞ > t22ðnÞP t23ðnÞ > 0 ð6Þ

with the help of Eq. (5) and three types AðrÞðr ¼ 1; 2; 3Þ of the wave polarization
X3

k;p;q¼1
kik;pqnknpAðrÞ

q � t2rA
ðrÞ
i ¼ 0 ði ¼ 1; 2; 3Þ; ð7Þ

for each direction n. The waves are quasi-Primary (qP) and quasi-Secondary (qS).

These polarization vectors satisfy the orthogonality condition

AðiÞðnÞ � AðkÞðnÞ ¼ dik ði ¼ 1; 2; 3Þ ð8Þ

for every selected direction n.

If a discontinuous wave is considered, equality (2) provides, that its front surface may be represented by

the correlation

sðx1; x2; x3Þ � t ¼ 0; ð9Þ

where the function sðx1; x2; x3Þ has to satisfy the first order partial differential equation (Fedorov, 1968;

Petrashen, 1980)

X3

i;k;p;q¼1
kik;pqpkppAðrÞ

q AðrÞ
i ¼ 1: ð10Þ

It generalizes the eikonal equation of geometrical optics to the case of anisotropic elastic waves.

The quantities pkðk ¼ 1; 2; 3Þ included into (10) represent the components of the refraction vector

pk � os=oxk ¼ nk=trðnÞðk ¼ 1; 2; 3Þ.
For the wave front (9) to be constructed, Eq. (10) solution should be found. The equation is transformed

to the system of ordinary differential equations
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oxk=os ¼
X3

i;p;q¼1
kik;pqppAðrÞ

q AðrÞ
i ; opk=os ¼ 0 ðk ¼ 1; 2; 3Þ ð11Þ

with the help of the method of characteristics.

The first group of these equations describes the wave propagation along rays with the ray velocity

n ¼ nðrÞðn; xkÞ. The rays are rectilinear and, in the general case, not orthogonal to the wave front surface.

The built up system of rays and fronts allows to proceed to the determination of the wave intensity in the

vicinity of its front. For the realization to be performed, it is convenient to use Eq. (1) solution expansion in

series along a ray as follows:

uq ¼
X1

m¼0
uðmÞq ðx1; x2; x3Þfm½t � sðx1; x2; x3Þ	 ðq ¼ 1; 2; 3Þ; ð12Þ

where the functions fm, satisfying the correlations f 0
mðyÞ ¼ fm�1ðyÞ, are supposed to possess discontinuities

of their derivatives, for example, of the order nþ 2 (Petrashen, 1980).

If the problem of investigation of the wave behaviour in the front nearest neighbourhood is set up, only

one term m ¼ 0 is retained in (12) and for the vector uð0Þ to be calculated, the system of homogeneous

equations

X3

k;p;q

kik;pqpkppuð0Þq � uð0Þi ¼ 0 ði ¼ 1; 2; 3Þ ð13Þ

is used. Its solution is represented in the form (Petrashen, 1980)

uð0Þq ¼
c0ða; bÞ � AðrÞ

q ða; b; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jða; b; sÞ

p ðq ¼ 1; 2; 3Þ; ð14Þ

where a, b, s is the system of ray coordinates and the functional determinant J ¼ oðx1; x2; x3Þ=oða;b; sÞ of
the transformation of the ray coordinates into Cartesian ones is the measure of the ray divergence in the ray

tube.

The presented correlations permit to trance the evolution of a discontinuous wave front and to calculate

magnitudes of the field functions discontinuities on its surface outside the interface between anisotropic

elastic media with differing properties.

3. Kinematics of interaction with interface

Consider the interaction of an axisymmetrical impulse wave emitted from a spherical source C with a
plane interface G between two transversally isotropic elastic media I and II. Let their axes of symmetry are

parallel to each other and perpendicular to the plane G. Assume ‘‘locally plane’’ approach, according to

which at the spot of the initial shock wave incidence on the separating plane G, all the reflected and re-

fracted waves are situated in the same plane, i.e. the third components of their polarization vectors equal

zero. This assumption permits to introduce the angles hm and �hhl, with which the reflected and refracted

waves move away from the boundary G and to use the Snellius generalized law expressed by the equalities

sin h
tðhÞ ¼

sin hm

tmðhmÞ
¼ sin �hhl

�ttlð�hhlÞ
ðm; l ¼ 1; 2Þ: ð15Þ

Here h is the incidence angle of the wave in the medium I; hm ðm ¼ 1; 2Þ the angles between the reflected rays
and the axis Ox2; �hhl ðl ¼ 1; 2Þ the angles between the rays penetrated into the medium II and the axis Ox2.

240 V.I. Gulyayev et al. / International Journal of Solids and Structures 40 (2003) 237–247



The indexes value m ¼ l ¼ 1 corresponds to the quasi-longitudinal (qP) waves, the value m ¼ l ¼ 2 is as-

sociated with the quasi-shear (qS) waves.

The difference between correlation (15) and usual form of the Shellius law is caused by the denominators

tmðhlÞ, �ttlðhlÞ dependence on the unknown angles hm, �hhl and, implicitly, on the incidence angle h. So, in
order to find the values of the angles hm, �hhl ðm; l ¼ 1; 2Þ corresponding to the set h, it is necessary to solve

non-linear equations system (15). With this aim in view, the Newton method jointly with the method of

continuation by a parameter are used (Gulyayev et al., 1982). Consider the first equality of system (15). Let

the angles hðnÞ
m , corresponding to some one value h ¼ hðnÞ are determined. Prescribe a small increment DhðnÞ

to the quantity hðnÞ and find the appropriate increment DhðnÞ
m . For this purpose take the first equation of

system (15) in the form

sinðhðnÞ þ DhðnÞÞ � tmðhðnÞ
m þ DhðnÞ

m Þ � sinðhðnÞ
m þ DhðnÞ

m Þ � tðhðnÞ þ DhðnÞÞ ¼ 0: ð16Þ

Separating its linear part, one gains

DhðnÞ
m � ½sin hðnÞ

m � otðhðnÞÞ=oh � cos hðnÞ � tmðhðnÞ
m Þ	 
 ½sin hðnÞ � otmðhðnÞ

m Þ=ohm � cos hðnÞ
m � tðhðnÞÞ	�1DhðnÞ:

ð17Þ

After calculation DhðnÞ
m , the kinematic parameters hðnþ1Þ ¼ hðnÞ þ DhðnÞ, hðnþ1Þ

m ¼ hðnÞ
m þ DhðnÞ

m , tðhðnþ1ÞÞ,
tmðhðnþ1Þ

m Þ are found. Linearizing the first equation of system (15) in the vicinity of the state hðnþ1Þ, tðhðnþ1ÞÞ,
hðnþ1Þ

m , tmðhðnþ1Þ
m Þ, the increments Dhðnþ1Þ, Dhðnþ1Þ

m can be determined and so on.

In doing so it is necessary to take into account that inasmuch as relation (17) is approximate a mistake of

the DhðnÞ
m calculation grows with the n increase. For this reason in order to compensate the inaccuracy the

appropriate residue of Eq. (15) should be added with the opposite sign to the right member of equality (17),

as it is done in Newton�s method. As result the computational scheme is deduced

DhðnÞ
m ¼ ½sin hðnÞ

m otðhðnÞÞ=oh � cos hðnÞtmðhðnÞ
m Þ	 � ½sin hðnÞotmðhðnÞ

m Þ=ohm � cos hðnÞ
m � tðhðnÞÞ	�1DhðnÞ

� sin hðnÞ � tmðhðnÞ
m Þ þ sin hðnÞ

m � tðhðnÞÞ ð18Þ

combining the method of continuation by a parameter and Newton�s method (Gulyayev et al., 1982). Its
accuracy increases with the DhðnÞ decrease.

The derivative ot=oh to be calculated one must differentiate the left member of Eq. (5) with respect to h
and equate it with zero. Then we have

X3

i¼1

X3

q¼1

obiq
oh

� b�iq ¼ 0; ð19Þ

where

biq ¼
X3

k;p¼1
kik;pqnknp � t2diq; ð20Þ

b�iq is the corresponding algebraic adjunct.

Substituting

obiq=oh ¼
X3

k;p¼1
kik;pqðnkonp=oh þ nponk=ohÞ � 2tot=oh � diq ð21Þ

into (19) we gain the equation determining ot=oh.
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In the same manner the derivatives otmðhðnÞ
m Þ=ohm are determined.

The performance of calculation with the use of scheme (18) is possible when some initial state hð0Þ, tðhð0ÞÞ,
hð0Þ

m , tmðhð0Þ
m Þ is preset. It is convenient for the considered case to select hð0Þ ¼ 0, tð0Þ, hð0Þ

m ¼ 0, tmð0Þ.
When the denominator of correlation (18) is not equal to zero, it allows to find the single increment Dhm

corresponding to the incidence angle h. So the equality

sin hðnÞ � otmðhðnÞ
m Þ=ohm � cos hðnÞ

m � tðhðnÞÞ ¼ 0 ð22Þ
is the condition of the solution bifurcation (Vainberg and Trenogin, 1969). With the purpose to continue

the solution through this state, it is necessary to add the terms of second order into (18).

The condition of possible non-uniqueness of the system (17) solutions derives from the phenomenon of

the rays convergency (tangency) and intersection of the reflected and refracted rays after the interaction of

the incident rays with the interface G and the manifold of similar critical states is attended with formation
of the rays family envelopes (caustics).

Inasmuch as the wave front singularities are generated in the caustics, its ray focussing occurs in some

spots which is accompanied by the functional determinant J transformation into zero and by the infinite

increase of the field functions intensities in the places of the geometrical singularities. In the caustics, the

wave phase also changes to the opposite one (Kravtsov and Orlov, 1980).

4. Discussion of results

At first consider the peculiarities of a discontinuous wave propagation in an unbounded transversally
isotropic medium. Let a normal uniform pressure is instantly applied to the surface of a spherical cavity C
of radius R ¼ 1. It initiates not only a qP discontinuous wave, as it occurs in an isotropic medium, but also

qS discontinuous waves whose front surfaces possess axial symmetry. Thanks to it intensity of the qS-wave

ðr ¼ 3Þ polarized orthogonally to the first ones ðr ¼ 1; 2Þ is equal to zero and hereafter it will not be in-

vestigated. The problem is to construct the evolving surfaces of these waves fronts and to investigate their

bifurcations.

At the case under study the tensor of elastic constants is represented by the matrix

ðCabÞ ¼
L 0

0 M

����
����; L ¼

k þ 2l k � l k
k � l k þ 2l � p k � l

k k � l k þ 2l

������

������
;

M ¼ diagðl � m; l; l � mÞ:
Thus, the three parameters l, m, p characterize the considered media difference from an isotropic medium

with the Lame parameters k, l.
Let the axis Ox2 coincides with the axis of symmetry of the medium elastic properties. Consider the

modes of sections of these waves fronts ðr ¼ 1; 2Þ by the plane x3 ¼ 0 depending on correlations between the

anisotropy parameters l, m, p with the parameters k, l and q being fixed.

With the target of systematization and classification of basic types of the discontinuous qP- and qS-waves
front surfaces depending on the parameters l, m, p values their magnitudes are selected which satisfy the

inequalities (Petrashen, 1980)

ðk þ l � m� lÞ2 > ðk þ 2lÞðk þ l þ m� pÞ;
ðk þ l � m� lÞ2 > ðk þ 2l � pÞðk þ l þ mÞ;
ðk þ l � m� lÞ2 < ðk þ l þ m� pÞðk þ l þ mÞ

ð23Þ

representing the conditions of origination of three types of singularities.
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Besides, the elasticity parameters are bound to satisfy the relationship

ðk þ l � lÞ2 > ðk þ 2l � pÞðk þ lÞ

ensuring positiveness of the medium internal energy.

To cover all the possible types of the discontinuous wave fronts, emanating from the spherical source, the

values of the parameters l, m, p were varied and preset as fractions of k, l, k þ 2l with the help of the

multipliers a, b, c. The values of the parameters q, k, l, a, b, c as well as the types of singularities and numbers
of the pictures in Fig. 1 illustrating axial sections of the appropriate fronts, are presented in Table 1. The

waves fronts, shown in Fig. 1, were built as loci of the ray velocity vectors nð2ÞðnÞ points at fixed time

Fig. 1. Outlines of the qP- and qS-waves fronts.
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moments. The points of intersection of the fronts with the rays emanating from the cavity spherical surface
with the angle increment 5� are identified by the black circlets.

Analysis of the gained results allows to draw inferences consisted with the conclusions of Petrashen

(1980). The qP-wave front curves are always convex and enclose the curves of the qS-waves fronts. The

following cases may occur depending on satisfaction of conditions (23).

Case 1. None of inequalities (23) is met, the singularities are absent, the both waves fronts make up

smooth surfaces (Fig. 1a).

Case 2. The first inequality (23) is fulfilled. The singularity of the first type comes into being and in the

axial section of the qS-wave front surface the bifurcation of ‘‘swallow tail’’ type is produced in the vicinity
of the axis Ox2. In the pointings, the values Jða; b; sÞ equal zero and the field functions uð0Þq in (14) tend to

infinity.

Case 3. The second condition (23) is satisfied, the second type singularity takes place. It is characterized

by the pS-wave front bifurcation and caustics generation in the neighbourhood of the axis Ox1 (Fig. 1c).
Case 4. The third correlation (23) is true. The singularity of the third type manifests itself in generation of

bifurcations and caustics in the vicinity of the rays inclined to the axes Ox1 and Ox2 (Fig. 1d).
Cases 5 and 6. The inequalities considered in cases 2 and 3 are met simultaneously. It is conceivable that

the singularities of the first and second types occur concurrently (Fig. 1e and f). Trace the behaviour of the
rays and normals to the fronts at regular and irregular points, displaying the rays and evolving fronts of the

qP- and qS-waves separately for case 4 (Fig. 2a and b). All the parts of the qP-wave fronts (Fig. 2a) are

regular because only one direction of the wave front normal n and one piece of the front correspond to

every selected ray direction. All the qS-wave front segments, away from pointings, are regular as well. But

in the vicinity of the pointings there are the ray directions, where three different directions of the normals n

may correspond to a ray. At these points the wave front bifurcates, the functional determinant J ¼
oðx1; x2; x3Þ=oða; b; sÞ degenerates and intensity of the wave function _uuq tends to infinity (Vainberg and

Trenogin, 1969). Condensation of rays in the points vicinity corroborates this conclusion.
The problem of dynamic interaction of the qP- and qS-wave fronts with the plane interface G between

two transversally isotropical media was solved with the aid of the foregoing approach. The plane x2 ¼ 1 m

is perpendicular to the axis Ox2, coinciding with the symmetry axes of the media elasticity parameters.

The first medium mechanical characteristics were determined by the parameters k1 ¼ 4:97
 1010 Pa,

l1 ¼ 3:91
 1010 Pa, l1 ¼ �0:5k1, m1 ¼ �0:3l1, p1 ¼ �0:4ðk1 þ 2l1Þ, q1 ¼ 2:65
 103 kg/m3; for the second

medium they constituted k2 ¼ 3:41
 1010 Pa, l2 ¼ 1:36
 1010 Pa, l2 ¼ �0:5k2, m2 ¼ �0:3l2, p2 ¼
�0:5ðk2 þ 2l2Þ, q2 ¼ 2:76
 103 kg/m3.

It was assumed that a normal uniform pressure was instantly applied to the surface of a spherical cavity
of radius R ¼ 0:1 m offset by 1 m from the interface. In spite of the fact that the pressure is uniform it

induces the qPð1�Þ-wave and the qSð1�Þ-wave following the first one.

Table 1

Elastic media properties

Case number Singularity type Figure k, l, q a [l ¼ ak] b [m ¼ bl] c [p ¼ cðk þ 2lÞ]
1 Without

singularity

a )0.5 0.3 )0.1

2 1 b
k ¼ 2:502
 1010 Pa,

l ¼ 1:965
 1010 Pa,

q ¼ 3
 103 kg/m3

0.1 0.3 0.5

3 2 c )0.5 )0.3 )0.4

4 3 d 0.5 0.3 0.1

5 1 and 2 e )0.3 0.3 0.5

6 1 and 2 f )0.7 )0.7 )0.4
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To determine directions of the rays reflected and refracted in the plane G, Snellius equation (15) were
solved for both of the waves. Fig. 3 shows relationships between the angles of quasi-longitudinal (a) and

quasi-shear (b) incident discontinuous waves (plotted as abscissas) and appropriate angles of the reflected

and refracted waves (plotted as ordinates). At calculations it was assumed Dh ¼ hð1�Þ ¼ 0:2� in (16). In-

asmuch as the functions of the angles of the waves qPð1þÞ (Fig. 3a) and qSð1þÞ (Fig. 3b) have the shapes of

straight lines coming under angles 45� from the origins, one may conclude that at the selected orientation of

the media properties symmetry axes the angles of reflection and incidence of the like waves have the same

values. Here the number 1, 2 in the round brackets denote the media numbers, the signs ‘‘)’’ and ‘‘þ’’
denote before and after interaction.

Fig. 2. Fronts of the qPð1�Þ (a) and qSð1�Þ (b) waves for the fourth combination of parameters.

Fig. 3. Solutions of the Snellius equations for the qPð1�Þ (a) and qSð1�Þ (b) incident waves.
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The Snellius equation solutions for the quasi-longitudinal incident qPð1�Þ-wave are unique (Fig. 3a), so

critical states do not appear in these events. But for the second case, when the qSð1�Þ-wave is incident, two
values of the angle hð1þÞ for the reflected qPð1þÞ-wave correspond to one value of the incidence angle hð1�Þ for

hð1�Þ < 32:8� with the straight vertical line hð1�Þ ¼ 32:8� being tangent to the curve hð1þÞ ðhð1�ÞÞ for the qPð1þÞ
wave (Fig. 3b). This being so, it may be concluded that the angle value hð1�Þ ¼ 32:8� is critical for the
incident qSð1�Þ-wave. In this state, condition (22) is satisfied and the values of the required variables ap-

proach infinity. The appropriate incident ray is limiting for the conventional ray theory applicability. With

the incident angle exceeding, the Snellius equation loses its sense and the system of the rays and fronts

becomes much more intricate. The conventional ray theory ceases its validity in these cases.

Shown in Fig. 4 are the sections of the incident, reflected and refracted waves fronts. Fig. 4a conforms to
the qPð1�Þ incident wave and the incident angle value hð1�Þ ¼ 85�, Fig. 4b is appropriate to the qSð1�Þ in-

cident wave and the angle value hð1�Þ ¼ 32:8�. Both the waves are generated by the same shock pressure

applied to a small spherical cavity surface. There are not any front bifurcations for the chosen elasticity

parameters of the media in the vicinity of the interface.

5. Conclusions

The problem of diffraction of discontinuous waves fronts at the interfaces between anisotropic elastic
media is set up in the framework of a zero approximation of the ray theory. A software is elaborated with

its use for the computer simulation of the waves fronts transformation and analysis of their field functions

discontinuities magnitudes evolution.

The carried out calculations allowed to investigate phenomena of bifurcations of the wave front surfaces

and trace the generation of reflected and refracted discontinuous waves in the interface between the media

with different mechanical properties. It is established that three factors may be the reasons of the fronts

bifurcations and caustics formation. Among these are the non-linear correlation between the directions of

rays and a wave normal, the non-linear character of Snellius equations and non-linear outline of interfaces.
In the vicinity of the wave front bifurcations, the field functions intensity tends to infinity.
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Fig. 4. Front outlines for the cases of the qPð1�Þ (a) and qSð1�Þ (b) incident waves.
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